Dimensionality reduction and visualization of geoscientific images via locally linear embedding
نویسنده
چکیده
The locally linear embedding (LLE) algorithm is useful for analyzing sets of very different geoscientific images, ranging from smooth potential field images, to sharp outputs from modeling fracturing and fluid flows via cellular automata, to hand sketches of geological sections. LLE maps the very high-dimensional space embedding the images into 2-D, arranging the images on a plane. This arrangement highlights basic relationships between the features contained in the images, thereby greatly simplifying the visual inspection of the entire dataset. Other applications include image classification, and visualization of the results of inverse modeling of geological problems in order to characterize domains of different mechanical behavior.
منابع مشابه
Nonlinear dimensionality reduction by locally linear embedding.
Many areas of science depend on exploratory data analysis and visualization. The need to analyze large amounts of multivariate data raises the fundamental problem of dimensionality reduction: how to discover compact representations of high-dimensional data. Here, we introduce locally linear embedding (LLE), an unsupervised learning algorithm that computes low-dimensional, neighborhood-preservin...
متن کاملLocally Linear Embedded Eigenspace Analysis
The existing nonlinear local methods for dimensionality reduction yield impressive results in data embedding and manifold visualization. However, they also open up the problem of how to define a unified projection from new data to the embedded subspace constructed by the training samples. Thinking globally and fitting locally, we present a new linear embedding approach, called Locally Embedded ...
متن کاملThink Globally, Fit Locally: Unsupervised Learning of Nonlinear Manifolds
The problem of dimensionality reduction arises in many fields of information processing, including machine learning, data compression, scientific visualization, pattern recognition, and neural computation. Here we describe locally linear embedding (LLE), an unsupervised learning algorithm that computes low dimensional, neighborhood preserving embeddings of high dimensional data. The data, assum...
متن کاملSelection of the Optimal Parameter value for the Locally Linear Embedding Algorithm
The locally linear embedding (LLE) algorithm has recently emerged as a promising technique for nonlinear dimensionality reduction of high-dimensional data. One of its advantages over many similar methods is that only one parameter has to be defined, but no guidance was yet given how to choose it. We propose a hierarchical method for automatic selection of an optimal parameter value. Our approac...
متن کاملGuided Locally Linear Embedding
Nonlinear dimensionality reduction is the problem of retrieving a low-dimensional representation of a manifold that is embedded in a high-dimensional observation space. Locally Linear Embedding (LLE), a prominent dimensionality reduction technique is an unsupervised algorithm; as such, it is not possible to guide it toward modes of variability that may be of particular interest. This paper prop...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computers & Geosciences
دوره 31 شماره
صفحات -
تاریخ انتشار 2005